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Conformational properties of a chain and a phase transition in poly(ethylene) crystal are studied by 
extending a previous Monte Carlo calculation for a chain in a cylindrical crystalline potential. The 
crystalline potential is here estimated from van der Waals interactions between one CH 2 group of a chain 
and its six neighbouring chains. Firstly, conformational disorders of the chains of various chain length 
are examined, and a definite dependence of the chain conformation on its length is demonstrated. 
Secondly, the behaviour of the chain at atmospheric pressure is simulated, where the modes of molecular 
motions and the associated disorders in conformation are clarified as a function of temperature. Thirdly, 
the phase transition at high temperature and pressure, from orthorhombic phase to hexagonal one, is 
simulated by assuming a proper molecular field for the chain. All these calculations show the present 
Monte Carlo calculation to have a wide variety of applications in the studies of polymer crystals. 

Keywords Monte Carlo method; poly(ethylene); crystal; chain length; conformational disorder; 
phase transition 

INTRODUCTION 

In a previous paper ~, a Monte Carlo (MC) method was 
applied to a problem of disorders in the chain 
conformation in crystals, where the intermolecular 
potential energy for each CH2 group ~(r), hereafter called 
crystalline potential for brevity, was assumed to be 
cylindrical, as will be the case for the high-pressure phase 
of poly(ethylene), for example, and furthermore the one 
end of the chain was treated as fixed. The value of the 
parameter G involved in the expression of the crystalline 
potential was so determined that the calculated fibre 
period, (c), reproduced well that observed by X-ray 
diffraction. The main purpose was to show the MC 
method to be useful when applied to the conformational 
problems in polymer crystals. 

In this second paper of the series, the assumptions made 
in the previous paper ~ are removed, i.e. the assumption of 
cylindrical symmetry for the crystalline potential and that 
of the fixed chain-end. This allows simulation of the 
behaviour of poly(ethylene) molecules with free chain- 
ends in the usual orthorhombic phase. Furthermore, the 
crystalline potential is directly estimated, though con- 
siderable simplifications are necessary to avoid making 
the MC calculations intractably complicated, from van 
der Walls interactions of a CHz group with the six 
neighbouring chains instead of assuming a plausible 
function as previously. 

CALCULATION METHOD 

In the previous paper 1, the crystalline potential was 
assumed to be cylindrical. This assumption is reasonable 
for such highly-disordered phases with hexagonal 
packing of molecules as the high-pressure phase of 
poly(ethylene) or the high-temperature phase of 
poly(tetrafluoroethylene). In general, however, the 
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crystalline potentials have lower symmetry than that of 
cylindrical one. In the following discussions, it is assumed 
that the crystalline potential can be described by an 
elliptic cylinder as: 

• (X, Y, Z)= G(Y2/S 2 + Z2)/2 

(0<S~<l) 

(1) 

where in a special case of S = 1, ~(X, Y, Z) represents a 
cylindrical potential (Figure 1). This model of crystalline 
potential, though simplified considerable, represents that 
in the orthorhombic phase of poly(ethylene). 

In the previous paper ~, the value of the parameter G 
was so estimated at each temperature and pressure that 
the calculated values of the average fibre period (c)  
accurately reproduced the observed one. In the present 
paper, however, the values of G and S in equation (1) are 
estimated by the rigorous calculation of the crystalline 
potential. The detailed procedure and the assumptions 
made are described in Appendix 1. A rigorous crystalline 
potential cannot, of course, be described by an elliptic 
cylinder. However, it is considered here that the essential 
feature of the crystalline potential can be expressed by 
such a simplified potential. 

In the previous paper 1, the first and the second atoms of 
each sample chain, which was composed of 30 carbon 
atoms, were treated as fixed at predetermined positions, 
with positions of remaining 28 atoms being selected at 
random. This assumption is plausible for a chain one end 
of which is rendered sluggish by some interactions with 
the end groups of the neighbouring chains, as will be the 
case for higher alcohols or bilayers of liquid membrane. 
This is, however, not a reasonable assumption for the 
poly(ethylene) molecules, where atoms at the both ends of 
the chain move as freely as inner ones. Here, therefore, the 
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following cyclic boundary scheme for the chain ends is 
adopted. 

Suppose up to the i-th chains of NC carbon atoms are 
generated. Then, the next (i + I)-th chain is generated by 
taking the positions of the first and the second atoms of 
the ( i+ l ) - th  chain, r(1, i + ] )  and r(2, i + l ) ,  as 
r(], i + [) = r ( N C -  t,i) and r(2, i + 1) = r ~ C ,  i) (Figure 1). 
Taking such a cyclic boundary scheme, the restrictions 
previously imposed on the first and the second atoms can 
be removed and a chain with free ends can be treated. 

The details of the calculation method are the same as 
that previously used except for the treatments of the 
crystalline potential and the chain end. 
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Figure 1 Polyethylene chain in an elliptic cylindrical potential 
• (Y,Z). Carbon atoms (O) are used as representatives of CH 2 
groups. Following values of the structural parameters of 
poly(ethylene) molecules are assumed: C-C bond length, 1.54 A; 
C-H bond length, 1.07A; C-C-C bond angle, 4, 109.5°; and H- 
C-H bond angle, 109 ~. Parameters {~i} represent the angles 
between the projections of C-C bonds on Y-Z plane and Z-axis 

EFFECTS OF CHAIN LENGTH 

Before considering the detailed calculation for 
poly(ethylene) in the crystal, the effects of chain length, 
more specifically the number of carbon atoms in the chain, 
on the conformational properties are discussed. A 
homologue of poly(ethylene) ranges from a low molecular 
weight paraffin, made of only a few carbon atoms, to a 
high molecular weight poly(ethylene) of several tens of 
thousands of carbon atoms. To clarify the properties 
characteristic of long-chain molecules is one of the most 
interesting subjects in polymer physics. Though a vast 
amount of experimental work has been carried out on the 
structure and the properties of this homologous series in 
the crystal 2, there has been no rigorous theoretical 
approach to the effects of the chain length. This is not 
surprising considering the mathematical difficulties 
involved in the analytical treatment of this problem. The 
MC method, however, allows calculation, with any 
desired accuracy, of the equilibrium conformational 
properties of the chain in the crystal. 

Figure 2 shows an average fibre period, (c), calculated 
by the MC method versus the length of the chain NC in the 
cylindrical potential (G = 3000 cal mol-1 A- 2, S = 1.0) at 
550K. The increase in the fibre period (c), in the present 
case of poly(ethylene), means an increase in order in the 
chain conformation. Figure 2 shows, therefore, that the 
conformation of the chain becomes more ordered as the 
chain becomes longer. The details of this situation are 
illustrated in Figure 3, where the distribution P(z) of an 
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Figure 2 Average fibre period (c~ of the chain in a cylindrical 
potential (G= 3000 cal mo1-1 A -2, S=I.0)  at 550K as a 
function of chain length 
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Figure 3 Distributions of internal rotation angles {~i} for chains 
of NC=6 (©),  NC=10 (0 ) ,  and NC=30 ( A )  at 550K in a 
cylindrical potential (G= 3000 cal mol -  1 A -  2, S = 1.0) 

internal rotation angle are shown for chains of 6, 10, and 
30 carbon atoms. From Figure 3, the increase in P(z) 
around trans (z = 0 °) with the increase in the chain length 
is apparent, accompanied with the associated decrease in 
P(z) around gauche(z = 120°). This can be understood as 
follows. The longer the chain becomes, the less is the 
probability of laying the whole chain inside the cylindrical 
potential, unless each z is properly chosen. This makes the 
chain increasingly ordered in conformation with the 
increase in the chain length. 

Another interesting point noted in Figure 3 is that the 
distribution P(z) has a definite maximum at the gauche 
position for shorter chain of NC=6  and NC=10, 
whereas for longer chains ofNC = 30 it has only a plateau. 
The increase in the chain length in the cylindrical 
potential tends to make the rotational isomerism 
increasingly unrealistic. 

As the calculations for much longer chains than 
NC = 30 require very long CPU time of computation, the 
obtained results must be extrapolated for longer chains to 
study the behaviour of real polymer chains. Though the 
convergence to the limiting value for an infinitely long 
chain depends on the temperature and the crystalline 
potential, as shown later, it is considered that the rapid 
change in conformation with the increase in chain length 
occurs only below a critical length NC* of ,~ 20. The chain 
of NC = 30 can be regarded, therefore, as a proper model 
of a real polymer chain. 

DISORDER AT ATMOSPHERIC PRESSURE 

The molecular motions and the associated disorders in 
conformation in poly(ethylene) crystal have been 
discussed in many papers, for example, in the studies of 
dielectric relaxation in crystals 3'4 or in the studies of the 
axial chain-transport in a process of thickening of 
lamellaC'6. These discussions have been based on more or 
less arbitrary molecular models. Here, the molecular 
motions and the disorders can be studied by the MC 
method on the firm basis of statistical mechanis. 

To study the behaviour of poly(ethylene) molecules in 
the crystal, it is necessary to evaluate first the crystalline 
potential O(X,Z): the interchain interaction energy 
between one methylene unit and the six neighbouring 
chains. The values of the parameters G and S in equation 
(1) at each temperature, estimated through the calculation 
given in Appendix 1, and the lattice constants a and b of 
the orthorhombic phase used in the calculation are listed 
in Table 1. 

The experimental methods to detect the disorder in the 
chain conformation within the crystal are at present very 
scarce. I.r. absorption method directly shows a presence of 
a gauche bond, but suffers from the ambiguity in 
determining the base-line of the spectrum in the 
estimation of the population of the gauche bonds in the 
crystal 9. An X-ray method, however, though it cannot 
clarify the local structure of the conformational defect, 
affords accurate information about the conformational 
disorders within the crystal through, for example, a 
decrease of a fibre period with the increase in 
temperature 1 o.11. 

In Figure 4, the fibre period, > c <,  calculated by the 
MC method and that observed by X-ray diffraction are 
shown versus temperature. As shown in Figure 4, the results 
of the present MC calculation accurately reproduce the 
observed decrease of the fibre period in poly(ethylene) 
crystal at least at relatively low temperatures. The dis- 
agreement at high temperature in Figure 4 is mainly 
because of the effect of chain length, as described later. 

The distribution P(z) of the internal rotation angles for 
the chain (NC=30) at 303K and 373K are shown in 
Figure 5. At atmospheric pressure, the chain has an 
ordered planar zig-zag conformation with most of the 
internal rotation angles distributed around trans. The 
root-mean-square deviations of z from trans (z2) I/2, are 
obtained at ~8 ° and 12 ° at 303K and 373K, respectively. 

The excitation of defects in the conformation having 
gauche bonds in the ordered orthorhombic phase has 
been frequently discussed for poly(ethylene) and for low 
molecular weight paraffins 6'~ 2. These defects are thought 
to be closely related to the mode of molecular motions of 
the chain in the crystal and are significant, for example, in 

Table I Values of the parameter G and S in equation (1), and those 
of the lattice parameters a and b of orthorhombie lattice at each 
temperature 

G 
T (K) (cal mo1-1 A -2)  S a (A) b (A) 

195 1922 0.44 7.270 a 4.910 a 
303 1145 0.38 7.414 b 4.942 b 
373 647 0.31 7.567 b 4.942 b 

a Data of Shen etal .  7 
b Data of Swan s 
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Average fibre period <c> at atmospheric pressure Figure 4 
versus temperature of the chain of NC= 30 calculated by the MC 
method (Q),  and that of poly(ethylene) crystal ( - - - )  observed 
by X-ray diffraction 1° 

the dielectric relaxation or in the thickening of lamellae. 
However, there are some doubts about the excitation of 
such defects or its role in the dielectric relaxation 4. As 
clearly shown in Figure 5, a peak, though small, is present 
around the gauche position in the distribution P(2-). This 
evicently shows a thermal excitation of gauche bonds in 
the chain even at room temperature. Though some of 
these gauche bonds should be ascribed to the defects at the 
chain ends, this strongly suggests the excitation of 
locallized defects, point dislocation-type, kink-type, or 
others, in the interior of the chain stems. 

The population of the defect in the chain conformation 
is considered to be related to the mobility of the chain in 
the crystal. Figure 6 shows a change in the population of 
the gauche bonds Wg, which is the sum of P(z) at four 
internal rotation angles (2-6--2-9) around gauche , with 
temperature. The value of ~ at 373K in Figure 6 will be 
considerably larger than that in real poly(ethylene) 
crystals, which is due to the effect of short chain length 
(NC = 30) as described later. It is, however, reasonable to 
think that the gauche defects are excited at least of an 
order of 0.1% near the melting point of poly(ethylene). 

Figures 7 and 8 show the changes in the distribution 
P(T) with chain length NC at 303K and 373K, 
respectively, at atmospheric pressure. With increase in 
NC, a sharpening of the trans peak occurs accompanied 
with a lowering of the gauche peak. These changes in 
conformation are summarized in Figure 9, where the 
calculated fibre period (c ) ,  the width of the trans peak 
( 2 " 2 >  1 /2 ,  a n d  the fraction of gauch bonds Wg are shown 
versus NC. At 303K, each quantity closely approaches the 
limiting value for an infinitely long chain at small NC as 
NC = 30, whereas at 373K a little further change may be 
expected at NC > 30. This difference with temperature in 
the limiting behaviour of the conformation will be the 
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main origin of the discrepancy at high temperature in 
Figure 4 between the fibre period calculated for the chain 
of NC=30 and that observed in poly(ethylene). Such 
change with temperature in the limiting behaviour is itself 
significant. It shows that the weaker the crystalline field is 
and consequently the more disordered the chain is, the 
slower is the approach of the conformational properties of 
the chain to those of infinitely long chain. 

The excitation of disorders in conformation at 
atmospheric pressure is, in this way, clarified by the MC 
method. The roles of such disorders are, however, not 
clear in the various physical phenomena such as the 
dielectric relaxation or the thickening of lamellae. These 
are, for the most part, problems of a kinetic process. 

DISORDER AT HIGH PRESSURE 

Poly(ethylene) shows a unique crystalline phase transition 
at high pressure and temperature. The usual 
orthorhombic phase of ordered planar zig-zag chains 
transforms to a hexagonal phase of highly disordered 
ones, for example, at 550K at 900 MPa. Here, this phase 
transition is considered in detail, and the behaviour of the 
chain at 550K and 900 MPa is examined. 

The lattice parameters in the orthorhombic phase near 
the phase transition point have been reported by some 
workers 13'14, who carried out the X-ray diffraction 
experiments at high temperature and pressure. The 
parameters G and S involved in the crystalline potential 
in the orthorhombic phase can be calculated in the same 
way as before using these observed lattice parameters. 
From the lattice parameters a = 7.43 A and b = 4.72 A at 
550K and 880 MPa 14, the values of G and S of G ~2450 
cal mol- 1 A - 2 and S = 0.44 are obtained. The crystalline 
potential in the hexagonal phase, alternatively, can be 
represented by a cylindrical potential as described 
previously. The value of G is, however, difficult to evaluate 
by a rigorous calculation of van der Waals interactions 
between chains due to the large disorder in the chain 
conformation. However, the value of G can be estimated, 
as reported in the previous paper, from the requirement 
that the calculated value of the fibre period, (c),  should 
reproduce accurately the observed one by X-ray 
diffraction. The calculated value of the fibre period at 
550K for G=3000 cal mo1-1 A -2 is ~2.36 A, which 
indicates a contraction of the fibre period of ~6% in 
reasonable agreement with experimental result 1 s. 
Therefore, the value of G at ~ 550K in the hexagonal 
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Figure 9 The average fibre period (c> ( 0 ) ,  the width of the 
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phase may be ~3000 cal mol-~ A -2. In the following 
discussions of the phase transition from orthorhombic to 
hexagonal, only the changes in the conformational 
properties with S are considered, where the value of G is 
treated as fixed at G = 3000 cal mol-  1 /~- 2. 

Here, a parameter (62) is introduced to describe the 
order in conformation projected onto the Y - Z  plane, 
where 6 represents an angle between the projection of a 
C ~  bond onto the Y--Z plane and the Z-axis (Figure 1). 
In a perfectly-ordered state in the orthorhombic phase, 
the chains will be in an ordered planar zig-zag structure 
with the zig-zag plane parallel to the Z-axis: (62) =0. In a 
highly-disordered state, however, each projected bond 
will have a random orientation: 

(52 ) = (2/n) ; / 2  t~ 2 d6 = ~z2/12 = 2700 deg 2. 

In Figure 10 is plotted the value of (62> versus S 
calculated by the MC method at 450, 500 and 550 K. The 
value of (62 ) evidently follows the general tendency 
described: it increases monotonically at any temperature 
from 0 deg. 2 at small S to 2700 deg. 2 at S=  1.0. Near 
S=I .0 ,  however, the increase in (62) becomes less 
marked with the increase in temperature. 

Data in Figure 10 show the order parameter (62) of a 
single chain within the crystalline potential specificied by 
the value of S. Similar to the usual molecular field 
approximation, the value of S for the chain of interest can 
be related to the value of (62) of the neighbouring chains. 
Thus, a serf-consistent equation for (32) or S can be 
established from this relation together with the data of 
Figure 10. The anisotropy of the molecular field (I)(Y, Z), 
which is expressed by S- 1, is thought to be reduced by the 
increase in disorder (62) of the neighbouring chains. A 
simple model of the molecular field obtained by extension 
of the treatment given by Peterlin and Fischer 16 is used 
(Appendix 2). 

In Figure 11 is plotted the parameter S of the molecular 
field obtained in Appendix 2 versus (52), superposed on 
the results of the MC calculation inFigure 10. The 
intersection of the two curves gives a self-consistent 
solution for (62) or S at each temperature. At 450K and 
500K, there are ordered, thermodyamically-stable 
solutions at S~0.5. At 550 K, however, there is only a 
disordered solution at S~I .0 .  The serf-consistent 
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solutions for (62) and S obtained in this way, and the fibre 
period (c) for the corresponding state are shown in 
Figure 12 versus temperature. Each quantity clearly shows 
a transition at m530 K, from that in the ordered state 
(S=0.48, (62) ]/2 =20 °, and (c)=2.50 A) to that in the 
disordered state (S= 1.0, (62)1/2= 52 °, and (c) =2.36 A). 
The value of 2.50 A for (c)just  below the transition point 
indicates a contraction of ~0.6~, where the maximum 
value of (c)  for the fully extended chain is in the present 
work 2.515 A 1. This contraction of the fibre period of 
~0.6~ shows good agreement with the observed 
contraction of ~0.59/o by X-ray diffraction ]a. 

In this way the crystalline transition at high 
temperature and pressure was successfully simulated by 
assuming that during the transion only the value of S 
varies, while that of G is fixed at G = 3000 cal mol- ] /~-  2. 
For the rigorous treatment of the present transition 
phenomena with a change in volume, however, the MC 
calculation based on temperature-pressure (T-P) 
ensemble should be used instead of the present canonical 
(T-V) ensemble. 
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APPENDIX 1 

In this Appendix, a method is described of estimating the 
values of G and S in equation (1) from a direct calculation 
of the interaction energy between a CH2 group of a chain 
and its 6 neighbouring chains. A 6-exponential potential 
for the van der Waals interactions is used 

u(r)= - A/r 6 + B exp ( -  Cr) (A-l) 
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Figure 12 Self-consistent solutions of the disorder (62) (O),  
the parameter S (A ) ,  and the fibre period <c> (©)  as a function 
of temperature 

where the values of the parameters A, B, and C used for 
C--C, C--H, or H--H interactions are those of Kimel et 
al. 17, and are listed in Table 2. 

According to the row potential formulation by 
McCullough and Peterson Is, the interaction energy 
between two parallel rows of atoms U(d, t) can be written 
as follows: 

U(d, t)/N = Uo(d ) + ~ Um(d ) cos (2mm/2) (A-2) 
m = l  

Uo(d) = - (3nA/82)/d s + (2B/2)dKI(Cd) (A-3) 

where K] is a modified Bessel function of the second kind, 
d is a separation distance between rows, t is a relative 
translational displacement of the rows, 2 is a spacing of 
atoms along the row, and N is the number of atoms on the 
row. As the crystalline potential • in equation (1) does not 
depend on the co-ordinate X, the dependence of U(d, t) on 
the variable t can be ignored, therefore: 

U(d, t)/N = Uo(d) 

= - (3nA/82)/d s + (2B/2)d. K 1 (Cd) (A-4) 

By the use of equation (A-4), the interaction energy E 
between one CH2 group of the chain and its six 
neighbouring poly(ethylene) chains can be calculated as a 
function of (r, 0) or (Y', Z'), where the orientation of the 
central CH2 group is so assumed that the line OC bisects 
the angle HCH (Figure 13). Here this energy E, which is a 
function of the position of the central carbon atom, is 
regarded as the crystalline potential * given in equation 
(1). 

Figure 14 shows typical graphs of E versus r and 0. For 
small values of r, which satisfy the inequality 
[E(r,O)-E(0,0)[ <~kT, E(r,O) may be represented by a quad- 
ratic function of r. Furthermore, the dependence of E(r,O) 
on 0 may be described approximately by a cosine function 
of 0 of period n. On the basis of these simplifications, the 
values of G and S can be estimated from the change of E(r,O) 
along the two directions 0=140 ° and 0=65 ° , which 
correspond to the directions of the long axis and the short 
axis, respectively, of the elliptic cylindrical potential *. 

APPENDIX 2 

In this appendix, a mean field value of the parameter S in 
equation (1) is estimated as a function of (62) of the 
neighbouring chains, following the procedure adopted by 
Peterlin and Fischer. 16 

Let a crystalline potential *(Y, Z) in equation (1), when 
the neighbouring chains are ordered, (62)=0, be 
described by G O and So as follows: 

O(Y, Z)= Oo(Y, Z)= Go(y2/s 2 + Z2)/2 (A-5) 

Table 2 Values of the parameters A, B, and C in equation (1) for 
C-C, C-H,  and H - H  interactions 

Atomic 
pairs A (erg Aft) B (erg) C (A -1)  

C-C 22.6 x 10 -12 25.7 x 10 - l °  4.26 
C-H 8.68 x 10 - ] 2  5.55 x 10 - l o  3.90 
H--H 3.42 x 10 -12 1.20 x 10 -1°  3.54 
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T 
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" "  a " "  
f 

Figure 13 Crystal structure of poly(ethylene) in the ordered 
orthorhombic phase projected onto Y-Z plane. Setting angle of 
the zig-zag plane c~ is taken to be 450. The position of the central 
carbon atom (X', Y') or (X,Y) denoted by the larger filled circle is 
expressed as Y'=r sin(O) and Z'=r cos(O), or Y=r sin(O ) and 
Z=r cos(O) 

P(~k o) = exp( - ~12o/(2a2)) / ~__:f2/2exp( - ~k 2 /(2tr2))d~ o 

where: 
( -  ~/2 ~<~bo ~<=/2) 

f 
nl2 

(62> = ~O2P(~Oo)dq/o 
d -n/2 

(A-7) 

(A-8) 

From equations (A-6) and (A-7), an average of the 
ctystalline potential (~o(Y, Z))  can be calculated as: 

~_ ~2 

(@o(Y, Z))  = P(~o)Oo(r, ~O - ~o)d~O o 
n/2 

= Gore{(sff 2 + 1)-e(So 2 - 1) cos (2~)}/4 (A-9 
where: 

/2 
e = exp (2i~) exp ( - ~2/(2a2))d@/ 

n/2 

/2 exp (A-10) ( -  ~02/(2ae))dO 
n/2 

The coefficient of cos (2~k) in equation (A-9), which 
described the anisotropy of the crystalline potential, 
decreases with the increase in a 2. 

As the value of G is considered to be fixed as described 
in the text: 

(Oo(Y, Z ) )  = Gr2{(S -2 + 1) - (S  -2 - 1) 

x cos (2~0) + (So 2 _ 1 )(1 - e)}/4 (A-11) 

e (dcg) 

2 ° 5 0  I0© 150 
i I i 

~9 

b o  
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4 
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2 o 

o 
C 

- 2 ~  Lu 
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"%. .. 

I ,I 
0 5  I 0  

r (~) 

-3 0 - 6  

Figure 14 Interaction energy E(r,O) between the central CH 2 
group and its six neighbouring chains at 195K, as a function of 0 
at r = l . 0 A  ( . . . . .  ), and as a function of r at 0=65 ° (C)) and at 
0=140 ° (O) 

where S, the increase of which represents a smearing of the 
crystalline anisotropy, is defined by e and So as follows" 

(S -2 - 1) =e(So 2 - 1) (A-12) 

As seen in equation (A-11), the average potential has an 
additional term, the third term in the brace, to equation 
(1). 

Due to an increase in volume during the transition, the 
interchain distances increase and, therefore, the 
crystalline potential softens. In deriving equation (A-11), 
the effect of such an increment in the interchain distances 
was not taken into account. As described in the text, only 
S in equation (1) vaires during the transition with G being 
constant. This means that the contribution of the third 
term in the brace of equation (A-11) is properly subtracted 
due to the softening of the crystalline potential described. 
The crystalline potential O(Y, Z) can be written, therefore, 
as follows: 

Introducing a polar co-ordinate ( Z = r c o s ( ~ )  and 
Y= r sin (~k): 

Oo(Y, Z ) =  Oo(r, ~O) 

= Gor2{ (1 + So 2)_ (So 2 _ 1) cos (2~,)}/4 (A-6) 

The disorder (£~2> of the neighbouring chains will lead 
to a fluctuation of the Y and Z axis (Figure 13). The 
following Gaussian form is assumed for the fluctuation of 
the axes: 

O(Y, Z ) =  G(y2/s  2 + Z2)/2 (A-13) 

where S is determined by So and e from equation (A-12). 
From equations (A-7), (A-8), (A-10), and (A-12), the value 
of the parameter S can be determined as a function of 
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